Stone coalgebras

نویسندگان

  • Clemens Kupke
  • Alexander Kurz
  • Yde Venema
چکیده

In this paper we argue that the category of Stone spaces forms an interesting base category for coalgebras, in particular, if one considers the Vietoris functor as an analogue to the power set functor on the category of sets. We prove that the so-called descriptive general frames, which play a fundamental role in the semantics of modal logics, can be seen as Stone coalgebras in a natural way. This yields a duality between the category of modal algebras and that of coalgebras over the Vietoris functor. Building on this idea, we introduce the notion of a Vietoris polynomial functor over the category of Stone spaces. For each such functor T we provide an adjunction between the category of T -sorted Boolean algebras with operators and the category of Stone coalgebras over T . Since the unit of this adjunction is an isomorphism, this shows that Coalg(T ) is a full reflective subcategory of BAOT . Applications include a general theorem providing final coalgebras in the category of T -coalgebras.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultrafilter Extensions for Coalgebras

This paper studies finitary modal logics as specification languages for Set-coalgebras (coalgebras on the category of sets) using Stone duality. It is wellknown that Set-coalgebras are not semantically adequate for finitary modal logics in the sense that bisimilarity does not in general coincide with logical equivalence. Stone-coalgebras (coalgebras over the category of Stone spaces), on the ot...

متن کامل

Coalgebras, Stone Duality, Modal Logic

A brief outline of the topics of the course could be as follows. Coalgebras generalise transition systems. Modal logics are the natural logics for coalgebras. Stone duality provides the relationship between coalgebras and modal logic. Furthermore, some basic category theory is needed to understand coalgebras as well as Stone duality. So we will need to learn something about modal logic, about S...

متن کامل

Duality for Logics of Transition Systems

We present a general framework for logics of transition systems based on Stone duality. Transition systems are modelled as coalgebras for a functor T on a category X . The propositional logic used to reason about state spaces from X is modelled by the Stone dual A of X (e.g. if X is Stone spaces then A is Boolean algebras and the propositional logic is the classical one). In order to obtain a m...

متن کامل

Generalized Vietoris Bisimulations

We introduce and study bisimulations for coalgebras on Stone spaces [14]. Our notion of bisimulation is sound and complete for behavioural equivalence, and generalizes Vietoris bisimulations [3]. The main result of our paper is that bisimulation for a Stone coalgebra is the topological closure of bisimulation for the underlying Set coalgebra.

متن کامل

Presenting Functors by Operations and Equations

We take the point of view that, if transition systems are coalgebras for a functor T, then an adequate logic for these transition systems should arise from the ‘Stone dual’ L of T. We show that such a functor always gives rise to an ‘abstract’ adequate logic for T-coalgebras and investigate under which circumstances it gives rise to a ‘concrete’ such logic, that is, a logic with an inductively ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. Notes Theor. Comput. Sci.

دوره 82  شماره 

صفحات  -

تاریخ انتشار 2003